RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

B.A./B.SC. FIRST SEMESTER EXAMINATION, DECEMBER 2012

FIRST YEAR

Mathematics (Honours)

Time : 11.00 am – 3.00 pm

Date : 14/12/2012

Paper : I

Full Marks : 100

1x5

5

3

2

3

2

3

2

5x5=25

Use separate answer-book for each group

Group – A

<u>Unit-I</u>

Question no.1 is compulsory. Answer <u>any two</u> from Q. no. 2 to Q. no. 4 and <u>any two</u> from Q. no. 5 to Q. no. 7

- 1. State whether the following statements are true or false. Justify your answer.
 - (i) If $f: A \to B$ and $g: B \to C$ are two mappings such that $g \circ f: A \to C$ is bijective, then both f and g are surjective.
 - (ii) If A, B are nonempty sets such that A x B is infinite, then both A and B are infinite.
 - (iii) Number of equivalence relations on $\{1, 2, 3\}$ is 4.
 - (iv) If (G, \circ) be a finite group with identity *e*, then there exists an integer *m* such that $a^m = e$ for all $a \in G$.
 - (v) The group $(\mathbb{R}, +)$ is cyclic.
- 2. Find all subgroups of $(\mathbb{Z}, +)$.

Answer **any five** questions:

- 3. (a) Let (S, \circ) be a semi-group with the identity element *e* and for any two elements $a, b \in S$, each of the equations $a \circ x = b$ and $y \circ a = b$ has a solution in S. Prove that (S, \circ) is a group.
 - (b) Find the *f*-image of the element 1 and 4 if $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 2 & 5 \end{pmatrix}$ is an (i) odd permutation, (ii) even permutation.
- 4. (a) Let (G, \circ) be a group in which $(a \circ b)^n = a^n \circ b^n$ hold for three consecutive positive integers for all $a, b \in G$. Show that *G* is abelian.
 - (b) 'Union of two subgroups of a group (G, \circ) is not always a subgroup of G'-justify.
- 5. a) Let *a* be an element of a group (G, \circ) and o(a) = n, then prove that $o(a^p) = n$ if *p* is prime to *n*. 2
 - b) Let (G, \circ) be a group and H be the subset defined by $H = \{x \in G : x \circ g = g \circ x \text{ for all } g \in G\}$. Prove that (H, \circ) is a subgroup of G.
- 6. Let (G, \circ) be an arbitrary group and e(G) be the collection of all cyclic subgroups of G. Consider the map $f: G \to e(G)$ defined by $f(g) = \langle g \rangle$. Is f necessarily (a) injective, (b) surjective? What can you say about G if it is known that f is bijective? 1+1+3
- 7. a) Let H be a sub-group of a group (G, \circ) , and $a, b \in G$. Prove that aH=bH if and only if $a^{-1}b \in H$. 3
 - b) Prove that the order of each element in a finite group (G, \circ) is a divisor of o(G).

Unit-II

8. a) Prove that every infinite bounded subset of R has a limit point.
b) Let A be an uncountable subset of R. Prove that A has a limit point.
2

9.	a)	Prove that there is no least positive real number.	2
	b)	If x and y are real numbers with $x < y$, then prove that there exists a rational number r such that	
		x < r < y.	3
10.		Define an enumerable set. Prove that the set $\{x \in \mathbb{R} : 0 < x < 1\}$ is not enumerable.	1+4
11.		Prove that union of a finite collection of open sets of the set of real numbers is an open set. Hence prove that a finite set is a closed set.	e 3+2
12.	a)	If S be an infinite and bounded set of reals, then show that S' , the derived set of S, is bounded.	3
	b)	Let A, B be two sets of real numbers. Prove that $(A \cap B)' \subset A' \cap B'$.	2
13.	a)	Prove that every sequence of real numbers has a monotone subsequence.	3
	b)	Let $\{u_n\}$ be a sequence of positive real numbers such that $\lim \sqrt[n]{u_n} = l$. Prove that	
		$\lim u_n = 0 if 0 \le l < 1 .$	2
14.	a)	Prove that the sequence $\{u_n\}$, where $u_1=0$, $u_2=1$ and $u_{n+2}=\frac{1}{2}(u_{n+1}+u_n)$ for all $n \ge 1$ is a Cauchy	
		sequence.	
		or	
		Prove that a Cauchy sequence of real numbers has a convergent subsequence.	2
	b)	Let $\{x_n\}$ be a bounded sequence of real numbers and E be the set of all subsequential limits of	
		$\{x_n\}$. Prove that E is a non empty, closed and bounded subset of $\mathbb R$.	3
15.	a)	Let f be a real valued function defined on a domain $D \subset \mathbb{R}$, $c \in D'$ and $\lim_{x \to c} f(x)$ exists. Prove	
		that f is bounded on some neighbourhood of c, where D' is the derived set of D.	2
	b)	Let I=(a,b) be a bounded open interval and $f: I \to \mathbb{R}$ be a monotone increasing function on I.	
		Prove that $\lim_{x \to b} f(x) = \sup_{x \in (a,b)} f(x)$ if f is bounded above on I.	3

Group – B

Answer <u>any five</u> questions from question no. 16 to question no. 23 and <u>any five</u> from question no. 24 to question no. 31

- 16. If $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ represents a pair of straight lines, prove that the area of the triangle formed by their bisectors and the axis of x is $\frac{\sqrt{(a-b)^2+4h^2}}{2h} \cdot \frac{ca-g^2}{ab-h^2}$. 5
- 17. If the tangents at P, Q of a parabola meet at a point T and S be the focus, prove that $ST^2 = SP.SQ$. 5

5

5

5

5

- 18. Find the locus of the point of intersection of a pair of perpendicular tangents to the conic $\frac{l}{r} = 1 + e \cos \theta$.
- 19. Reduce the equation $3(x^2 + y^2) + 2xy = 4\sqrt{2}(x + y)$ to its canonical form. State the nature of the conic represented by it and determine the equations of its axes.

20. Prove that the locus of the poles of the normal chords of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is the curve $a^6y^2 - b^6x^2 = (a^2 + b^2)^2 x^2 y^2$.

- 21. Show that the four points $\vec{\alpha} = 6\vec{a} - 4\vec{b} + 10\vec{c}, \vec{\beta} = -5\vec{a} + 3\vec{b} - 10\vec{c}, \vec{\gamma} = 4\vec{a} - 6\vec{b} - 10\vec{c}, \vec{\delta} = 2\vec{b} + 10\vec{c}$ are coplanar.
- 22. Show that the solution of the equation $t\vec{r} + \vec{r} \times \vec{a} = \vec{b}$ where t is a non zero known scalar and \vec{a}, \vec{b} are two known vectors can be put as $\vec{r} = \frac{1}{t^2 + |\vec{a}|^2} \left(\frac{\vec{a} \cdot \vec{b}}{t} \vec{a} + t\vec{b} + \vec{a} \times \vec{b} \right)$.

23. Find the shortest distance in terms of L between the lines $\vec{r} = \vec{\alpha} + t\vec{\beta}$ and $\vec{r} = \vec{\gamma} + s\vec{\delta}$, where $\vec{\alpha} = \hat{i} + 2j + 3k$, $\vec{\beta} = 2\hat{i} + 3j + 4k$, $\vec{\gamma} = L\hat{i} + 3j + 4k$ and $\vec{\delta} = 3\hat{i} + 4j + 5k$.

For what value of L the lines are coplanar?

24. Prove that $(x + y + 1)^{-4}$ is an integrating factor of $(2xy - y^2 - y)dx + (2xy - x^2 - x)dy = 0$ and hence solve it. 2+3

4 + 1

5

- Reduce the differential equation $y = 2px p^2y$ to Clairaut's form by the substitution 25. $y^2 = Y$, x = X and then obtain its complete primitive and singular solution, if any. 5 Solve by the method of undetermined coefficients $(D^2 - 3D)y = x + e^x \sin x, D \equiv \frac{d}{dx}$. 5 26. Solve by the method of variation of parameters $\frac{d^2y}{dx^2} + K^2 y = \tan Kx$. 5 27. Solve: $x^3 \frac{d^3y}{dx^3} + 2x^2 \frac{d^2y}{dx^2} + 2y = 10(x + \frac{1}{x}).$ 5 28. Find the orthogonal trajectories of the family of co-axial circles $x^2 + y^2 + 2gx + c = 0$ where g is 29. the parameter and C is a constant. 5 Show that, if y_1 and y_2 be solutions of the equation $\frac{dy}{dx} + Py = Q$ where P and Q are functions of x 30. alone, and $y_2 = y_1 z$ then $z = 1 + ae^{\int \frac{Q}{y_1} dx}$, where a is an arbitrary constant. 5
- 31. Show that $\sin x \frac{d^2 y}{dx^2} \cos x \frac{dy}{dx} + 2y \sin x = 0$ is exact and solve it completely.

80參Q